Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.

نویسندگان

  • Mao Sun
  • Jiang Hao Wu
چکیده

Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion were studied using the method of computational fluid dynamics. The Navier-Stokes equations were solved numerically. The solution provided the flow velocity and pressure fields, from which the vorticity wake structure and the unsteady aerodynamic forces and torques were obtained (the inertial torques due to the acceleration of the wing-mass were computed analytically). From the flow-structure and force information, insights were gained into the unsteady aerodynamic force generation. On the basis of the aerodynamic and inertial torques, the mechanical power was obtained, and its properties were investigated. The unsteady force mechanisms revealed previously for hovering (i.e. delayed stall, rapid acceleration at the beginning of the strokes and fast pitching-up rotation at the end of the strokes) apply to forward flight. Even at high advance ratios, e.g. J=0.53-0.66 (J is the advance ratio), the leading edge vortex does not shed (at such advance ratios, the wing travels approximately 6.5 chord lengths during the downstroke). At low speeds (J approximately equal to 0.13), the lift (vertical force) for weight support is produced during both the down- and upstrokes (the downstroke producing approximately 80% and the upstroke producing approximately 20% of the mean lift), and the lift is contributed mainly by the wing lift; the thrust that overcomes the body drag is produced during the upstroke, and it is contributed mainly by the wing drag. At medium speeds (J approximately equal to 0.27), the lift is mainly produced during the downstroke and the thrust mainly during the upstroke; both of them are contributed almost equally by the wing lift and wing drag. At high speeds (J approximately equal to 0.53), the lift is mainly produced during the downstroke and is mainly contributed by the wing drag; the thrust is produced during both the down- and upstrokes, and in the downstroke, is contributed by the wing lift and in the upstroke, by the wing drag. In forward flight, especially at medium and high flight speeds, the work done during the downstroke is significantly greater than during the upstroke. At advance ratios J approximately equal to 0.13, 0.27 and 0.53, the work done during the downstroke is approximately 1.6, 2.8 and 4.2 times as much as that during the upstroke, respectively. At J=0 (hovering), the body-mass-specific power is approximately 29 W kg(-1); at J=0.13 and 0.27, the power is approximately 10% less than that of hovering; at J=0.40, the power is approximately the same as that of hovering; when J is further increased, the power increases sharply. The graph of power against flying speeds is approximately J-shaped. From the graph of power against flying speeds, it is predicted that the insect usually flies at advance ratios between zero and 0.4, and for fast flight, it would fly at an advance ratio between 0.4 and 0.53.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The aerodynamics of hovering flight in Drosophila.

Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces ...

متن کامل

Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.

We systematically investigated the effect of body rotation on the aerodynamic torque generation on flapping wings during fast turning maneuvers (body saccades) in the fruit fly Drosophila. A quasi-steady aerodynamic simulation of turning maneuvers with symmetrically flapping wings showed that body rotation causes a substantial aerodynamic counter-torque, known as flapping counter-torque (FCT), ...

متن کامل

Paddling mode of forward flight in insects.

By analyzing high-speed video of the fruit fly, we discover a swimminglike mode of forward flight characterized by paddling wing motions. We develop a new aerodynamic analysis procedure to show that these insects generate drag-based thrust by slicing their wings forward at low angle of attack and pushing backwards at a higher angle. Reduced-order models and simulations reveal that the law for f...

متن کامل

Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.

A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier-Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake struct...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2003